prss.net
当前位置:首页 >> 1/(sinx)^3Cosx的不定积分 >>

1/(sinx)^3Cosx的不定积分

记★=∫(cscx)^3dx =∫cscx*(cscx)^2dx =-∫cscx*d(cotx) =-cscx*cotx-∫(cotx)^2*cscxdx =-cscx*cotx-∫(cscxcscx-1)*cscxdx =-cscx*cotx-∫(cscx)^3dx+∫cscxdx =-cscx*cotx-★+∫cscxdx 故2★=-cscx*cotx+∫cscxdx 从中可得★

∫1-(sinx)^3dx =x+∫(sinx)^2dcosx =x+∫(1-cosx^2)dcosx =x+cosx-(1/3)(cosx)^3 +C

分子分母同乘以sinx/sinx得sinx/[(sinx)^4] 原式=∫sinxdx/[(sinx)^4] =-∫d(cosx)/(1-cos²x)²

如下

是不是写错题了,分母应该是乘吧?

∫[cosx/(sinx)^3]dx =∫[1/(sinx)^3)]d(sinx) =∫(sinx)^(-3)d(sinx) =[1/(-3+1)]×(sinx)^(-3+1)+C =(-1/2)×(sinx)^(-2)+C(其中C为任意常数) 所以cosx/(sinx)^3的不定积分之间只相差一个常数C,如果出现不同结果就一定能通过恒等变换相互得到,否则...

tan²x=sin²x/cos²x=(1-cos²x)/cos²x =1/cos²x-1 =sec²x-1 所以tan²x和sec²x只相差一个常数-1 那么各自加上任意常数C后,答案其实是一样的。 注意,不定积分后面有个常数c,所以有可能不同的算法...

令u = tan(x / 2),dx = 2du / (1+u²) sinx = 2u / (1+u²),cosx = (1 - u²) / (1 + u²) ∫ dx / (sinx + cosx) = ∫ 2 / 【(1 + u²) * [2u / (1+u²) + (1 - u²) / (1 + u²)]】 du = 2∫ du / (-u² + 2...

网站首页 | 网站地图
All rights reserved Powered by www.prss.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com