prss.net
当前位置:首页 >> 求不定积分sinx*E^Cosx >>

求不定积分sinx*E^Cosx

你好!用凑微分法计算,∫sinx*e^cosxdx=-∫e^cosxdcosx=-e^cosx +c。经济数学团队帮你解答,请及时采纳。谢谢!

计算过程如图所示。

点评:这道题只需注意到cosx是sinx的导数即可求解,复合函数的求导法则。

因为cosxdx=d(sinx)呀

∫e^xsinxdx =∫sinxde^x =sinxe^x-∫e^xdsinx =sinxe^x-∫cosxe^xdx =sinxe^x-∫cosxde^x =sinxe^x-(cosxe^x-∫e^xdcosx) =sinxe^x-cosxe^x-∫sinxe^xdx 2∫e^xsinxdx=sinxe^x-cosxe^x ∫e^xsinxdx=e^x(sinx-cosx)/2 附:可以查看百度百科的“分部积分法”...

这人不诚信,不要回答

tan²x=sin²x/cos²x=(1-cos²x)/cos²x =1/cos²x-1 =sec²x-1 所以tan²x和sec²x只相差一个常数-1 那么各自加上任意常数C后,答案其实是一样的。 注意,不定积分后面有个常数c,所以有可能不同的算法...

分部积分 ∫e^xsinxdx=∫sinxde^x =sinx*e^x-∫e^xdsinx =sinx*e^x-∫e^xcosxdx =sinx*e^x-∫cosxde^x =sinx*e^x-cosx*e^x+∫e^xdcosx =sinx*e^x-cosx*e^x-∫e^xsinxdx 所以2∫e^xsinxdx=sinx*e^x-cosx*e^x 所以∫e^xsinxdx=e^x(sinx-cosx)/2

原式=∫(sinx)^5*(cosx)^2*cosxdx =∫(sinx)^5*[1-(sinx)^2]*d(sinx) =∫[(sinx)^5-(sinx)^7]*d(sinx) =(1/6)*(sinx)^6-(1/8)*(sinx)^8+C,其中C是任意常数

∫[cosx/(sinx)^3]dx =∫[1/(sinx)^3)]d(sinx) =∫(sinx)^(-3)d(sinx) =[1/(-3+1)]×(sinx)^(-3+1)+C =(-1/2)×(sinx)^(-2)+C(其中C为任意常数) 所以cosx/(sinx)^3的不定积分之间只相差一个常数C,如果出现不同结果就一定能通过恒等变换相互得到,否则...

网站首页 | 网站地图
All rights reserved Powered by www.prss.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com